1. Task Relevant Data
a. Database or data warehouse name
b. Database tables or data warehouse cubes
c. Condition for data selection
d. Relevant attributes or dimensions
e. Data grouping criteria
2. Type of knowledge to be mined
a. Characterization
b. Discrimination
c. Association
d. Classification/prediction
e. Clustering
f. Outlier Analysis
g. Other data mining tasks
3. Background Knowledge
a. Typical background knowledge: Concept hierarchies
b. Schema Hierarchy
c. Set-grouping hierarchy
d. Operation-derived hierarchy
e. Rule based hierarchy
4. Pattern interestingness measurements
a. Simplicity
b. Certainty
c. Utility
d. Novelty
5. Visualization/presentation of discovered patterns
a. Different backgrounds/usages may require different forms of representation e.g. Rules, tables
b. Importance of concept hierarchy
c. Different kind of knowledge require different representation: Association, classification, clustering etc
a. Database or data warehouse name
b. Database tables or data warehouse cubes
c. Condition for data selection
d. Relevant attributes or dimensions
e. Data grouping criteria
2. Type of knowledge to be mined
a. Characterization
b. Discrimination
c. Association
d. Classification/prediction
e. Clustering
f. Outlier Analysis
g. Other data mining tasks
3. Background Knowledge
a. Typical background knowledge: Concept hierarchies
b. Schema Hierarchy
c. Set-grouping hierarchy
d. Operation-derived hierarchy
e. Rule based hierarchy
4. Pattern interestingness measurements
a. Simplicity
b. Certainty
c. Utility
d. Novelty
5. Visualization/presentation of discovered patterns
a. Different backgrounds/usages may require different forms of representation e.g. Rules, tables
b. Importance of concept hierarchy
c. Different kind of knowledge require different representation: Association, classification, clustering etc